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POPULAR SUMMARY 

Submitted to Journal of Climate 

A number of satellites presently in orbit, including the Tropical Rainfall 
Measuring Mission (TRMM), are producing global maps of rainfall amounts, 
sometimes on a daily basis, sometimes on a monthly basis. The rainfall values 
on these maps have considerable errors in them, partly due to problems with 
remote sensing techniques for measuring rain, and partly because the satellite 
doesn't view each spot on the earth continuously. The latter kind of error is 
referred to as "sampling error," because the maps are derived from occasional 
samples or snapshots taken by the satellite as it orbits the earth. 

There have been many studies attempting to provide quantitative estimates of 
how big sampling error might be for each rainfall value at each location on a 
satellite rainfall map. This paper is a significant contribution to this effort 
because it uses radar data from a large section of the U.S. (similar to the radar 
data displayed on weather channels) to make many estimates of what the 
sampling error in satellite rainfall maps should be for thousands of different 
cases. It uses a fairly straightforward, common-sense method to do this, but it 
requires substantial amounts of computer time to produce these values. A 
simple formula that seems to predict the sampling error with good accuracy is 
found that predicts the sampling errors quite well, so that sampling errors can 
be estimated in situations when radar data are unavailable or the computer 
analysis cannot be done. 

The paper also compares the sampling errors obtained with the Straightforward 
method to sampling-error estimates obtained using some theoretical ideas 
developed in earlier papers by T. L. Bell and P. K. Kundu. The two estimates 
compare very well, thus providing some support for extending the theoretical 
predictions to areas where there are no radar data, such as in undeveloped 
countries and over the oceans. 
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Abstract 

The uncertainty of rainfall estimated fiom averages of discrete samples collected by a satellite is 

assessed using a multi-year radar data set covering a large portion of the United States. The 

sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100 km, 

200 km, and 500 km space domains, 1 day, 5 day, and 30 day rainfall accumulations, and regular 

sampling time intervals of 1 h, 3 h, 6 h, 8 h, and 12 h. These extensive analyses are combined to 

characterize the sampling uncertainty as a fbnction of space and time domain, sampling 

frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown 

that both parametric and non-parametric statistical techniques of estimating the sampling 

uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on 

the choice of technique for obtaining them. They can also vary considerably fiom case to case, 

reflecting the great variability of natural rainfall, and should therefore be expressed in 

probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained 

by studies based on data fiom different climate regions and/or observation platforms. 

c 
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1. Introduction 

Monitoring rainfall on a global scale is key to a quantitative understanding of the global 

hydrologic cycle and our climate system.’ Observations from spaceborne platforms offer global 

coverage, albeit with limited sampling in space and time depending on the satellite’s orbit and 

instrument configuration. This limitation in sampling fiequency, in combination with the 

intermittence of rainfall in space and time, causes satellite-based rainfall estimates to be 

uncertain. In this study, the sampling-related uncertainty oE is assumed to be a function of the 

rainfall rate R , the domain size A , the time integration T , and the sampling time interval At ; 

that is 

0 E -  -f ( --- A t ) .  
R ’ A ’  T 

Studies such as North and Nakamoto (1989), Bell et al. (1990), Steiner (1996), Bell and Kundu 

(2000), and Bell et al. (2001), using ground-based rainfall data, have shown that this uncertainty 

is expected to decrease for higher rainfall rates, larger domain sizes, and longer time integration. 

This has also been seen in studies using satellite data, for example, by Chang et al. (1993), Weng 

et al. (1994), Berg and Avery (1995), and Chang and Chiu (2001). On the other hand, increasing 

the sampling time interval (i.e., reducing the sampling frequency) will result in a larger 

uncertainty. A recent survey of sampling uncertainty for various geophysical parameters is 

provided by Astin (1997). 

Using a multi-year data set of continental-scale, radar-based rainfall observations over the 

United States east of the Rocky Mountains, the sampling-related uncertainty of averages of 

observations made at regular time intervals is studied in depth. Irregularities in the space-time 

sampling pattern (e.g., Salby 1982a, b; Wunsch 1989; Chelton and Schlax 1991; Wu et al. 1995; 

Zeng and Levy 1995; Negri et al. 2002) and issues of rainfall retrieval accuracy (e.g., Wilheit 
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1988; Bell et al. 1990, 2001; Ha and North 1995) or combination of observations from multiple 

satellite platforms (e.g., Shin and North 1988; North et al. 1993; Bell and Kundu 1996) are not 

considered as part of this analysis. In particular, the sampling-related uncertainty is evaluated as 

a function of typical space and time domains, sampling frequency, and the rainfall intensity. 

The present analyses go beyond what previous studies have achieved in at least two major 

ways: (1) an extensive data base is explored in depth and (2) two distinctly different approaches 

of estimating the sampling-related uncertainty are compared. Moreover, an attempt is made to 

characterize the accuracy of such uncertainty estimates. 

This study thus aims at quantifying the uncertainty (often dubbed sampling error) of 

remotely-sensed rainfall estimates based on discrete sampling in space and time. The results will 

provide guidance for interpretation of rainfall estimates from satellites, such as the Tropical 

Rainfall Measuring Mission (TRMM) satellite (Simpson et al. 1988; Simpson et al. 1996; 

Kummerow et al. 1998) or the Advanced Microwave Sounding Units (AMSU) flown aboard the 

current operational National Oceanic and Atmospheric Administration (NOM) polar-orbiting 

satellite series (e.g., Kidder et al. 2000; Ferraro et al. 2002), and planning of future satellite 

missions, such as the Global Precipitation Measurement (GPM) mission. 

2. Analysis procedures and data 

a) A framework for estimation of sampling uncertainty 

There are at least two different statistical approaches to estimating the sampling-related 

uncertainty of rainfall: parametric methods (with stochastic space-time rainfall model parameters 

fitted to data) are contrasted by non-parametric, purely empirical methods (based on subsampling 

scenarios). These latter methods typically build on resampling by sh@s techniques based on 
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high-resolution rain gauge and/or radar data (e.g., McConnell and North 1987; Steiner 1996; Li 

et al. 1996). A framework is developed here that enables direct comparison of the two 

approaches. 

In the study of sampling uncertainty by Laughlin (1981), a satellite is assumed to make its 

first observation at t = 0 ,  subsequent observations at regular intervals of A t ,  and its last 

observation at t = T .  The resampling by shifts method of estimating the sampling-related 

uncertainty assumes instead that the simulated satellite observations begin at an arbitrary time to 

with Octo I At. Laughlin’s approach, however, can easily be modified to accommodate 

arbitrary starting times within the averaging interval [0, TI, as summarized below. Except for the 

starting time, the assumptions are the same as in Laughlin (1981): the satellite sees an area A 

(all of it) at intervals At during a time period T . Sampling begins at starting time to ,  and a total 

of n = T/At samples are collected. Regardless of the starting point to ,  the true average rainfall 

is defined to be 

I T  

TO 
R = - IRA (t)dt, 

while the sampIe average, with starting time t o ,  is 

1 n-1 

k=O 
i ( t o )  = - C R A  (to + f i t ) .  (3) 

R, ( t )  is the instantaneous rain rate at time t averaged over a grid box with area A . The error in 

the sample average due to the discrete sampling for a particular starting time to is 

E(t0 ) = k(to)- x . (4) 
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The resampling by shifts method obtains an estimate of the mean-squared sampling uncertainty 

02 from the average of e2(t0) over all possible values of to in the interval 0 < to I At which 

may be denoted as 

0; =(EZ( t , ) )  to . ( 5 )  

Using the same statistical assumptions as Laughlin (1981), an estimate of ( 5 )  is derived in the 

Appendix, with the result 

with 

and 

c1 ( z )  = coth(z/2) - 2/z 

e-' 
c2(z)  = 2 z-2 - [ (l-e-zr]* 

(7) 

Here, a: is the variance and z, the correlation time (i.e., l/e-folding time of the 

autocorrelation) of the instantaneous area-average rain rate R, (t)  . A term of order ( A t / T y ,  

which depends on to and that was neglected in the approximation given in Bell et al. (1990), has 

been included in (6). A term of order exp(-T/zA) has been omitted from (6); however, it is 

typically small and can be neglected. Shin and North (1 988), Bell and Kundu (1996,2000), and 

Bell et al. (2001) provide additional background for the derivation of Eq. (6). 

Equation (6) predicts that 0, should be approximately linear in At for small At,  because a 

power series expansion of (6) gives 
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QE 2 = 0: [ [ 1 + &](AtY -[ -+ 1 
62,T 6T 360z:T 12Oz:T’ 

For T >> z, (typically z, - 3-8 h), this can be simplified to 

(9) 

Thus oE is linear in At for small A t ,  and because the next order correction term in (9) is fairly 

small, the linearity may persist over a substantial range of values of At. As At becomes large 

compared with the correlation time z, , however, (6) predicts that oE should begin to scale more 

like a. 
It should be noted that this linearity in At is a consequence of Laughlin’s (1981) assumption 

that the autocorrelation of the area-average rain rate behaves like an exponential for small 

lags z . An autocorrelation that didn’t drop off so quickly for small lags, as ,-(‘IrA , for instance, 

would lead to sampling uncertainty increasing as a higher power of A t .  As we will see later, the 

data exhibit an approximately linear dependence on At over the sampling frequency range 

investigated, suggesting that the autocorrelation of R,  (t ) may be roughly exponential. 

For T small enough, there is the possibility that Eq. (6) might predict deviations from simple 

proportionality to T4.’. As we will see later, however, even for T as small as 1 day the 

deviations from the inverse-square-root scaling are small. 

How does 6, depend on the area A ?  This is not quite as easy to assess, because the 

dependence of oE on A is governed both by the dependence of Q, and of z, on A .  For large 

A ,  assuming that the spatial and temporal correlation of rain events decreases rapidly for 

sufficiently large space and time separations, it is likely that o, - and that z, may become 
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independent of A ; thus, for large space domains 6, may be proportional to For small A ,  

however, this does not need generally be the case. In radar data collected during GATE, the 

Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (Kuettner et al. 

1974), for example, a behavior like 6: =25A-".33 mm2/h2 and z, =0.39A0.26 h is seen (Bell 

1987; Bell et al. 1990), where A has units of h2. The dependence of cr, on A for small A ,  if 

the fits to GATE statistics are to be believed, is thus approximately - A-0.3 according to (10). 

b) Data and analysis procedures 

The analyses of the sampling-related uncertainties are based on a multi-year, continental- 

scale, merged radar data product provided by Weather Services International (WSI) Corporation 

at a resolution of approximately 2 km in space and 15 min in time. Radar reflectivity of this 

product comes at 16 discrete levels. For the purpose of our analyses, the radar reflectivity factor 

2 was converted to rainfall rate R using a hail threshold of 55 dBZ and a gauge-adjusted 

2 = 600RlS4 relationship. A more detailed description and different use of this data product may 

be found in Carbone et al. (2002). Issues about the radar rainfall estimation are extensively 

discussed in Steiner et al. (1999) and references therein. 

This data set may not reflect the true rainfall that occurred at any given point in space and 

time; however, it provides a most realistic representation of rain variability over the continental 

United States east of the Rocky Mountains. The gauge-adjustment resulted in essentially 

unbiased radar rainfall estimates, as shown by Fig. 1. The analyses of the sampling-related 

uncertainty are thus on good grounds, particularly because they build primarily upon relative 

comparisons rather than absolute values, as detailed below. 

c 
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The analyses discussed here are focused on the summer months June 1999 (Fig. IC), July 

2000 (Fig. Id), August 1997 (Fig. le), and September 1998 (Fig. 10. These months were 

selected to represent data from various months and years, and to have minimal data gaps (less 

than 3 rainfall maps missing in total). Data gaps were filled by linear interpolation between time 

steps for each grid point individually. The present study domain spans approximately 35 N to 45 

N in degrees longitude and 80 W to 100 W in degrees latitude (Fig. la). Roughly speaking, this 

domain covers the area in between the Rocky Mountains (to the west) and the Appalachian 

Mountains (to the east), and reaches from Texas (in the south) to the Great Lakes (in the north). 

The study area was divided into squared domains with side length L ( L  = of 500 km (6 

domains), 200 km (48), or 100 km (192), respectively, and rainfall observations were integrated 

over time periods T of 30 days (1 period), 5 days (6), or 1 day (30) for our analyses. The 

sampling-related uncertainty was assessed for sampling time intervals At of 12 h, 8 h, 6 h, 3 h, 1 

h, and 15 min (full resolution), respectively. Analyses were carried out for all combinations of 

domain size, time period, and sampling frequency for all four months investigated. 

1) APPROACH BASED ON RESAMPLING BY SHIFTS 

The basic analysis procedure is that of a subsampling exercise to determine how much 

uncertainty is typically present in rainfall estimates, as a function of the frequency of sampling. 

The rainfall for a given time period is estimated from samples obtained at regular time intervals, 

assuming that each sample is representative of what occurred during the unobserved interval 

around it. All possible sampling scenarios based on the 15 min data and the selected sampling 

time interval are analyzed (by shifting the start time) and comparing the sample average to the 

rainfall estimate based on using all samples, as outlined in section 2a. 
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The sampling-related uncertainty oE, estimated as the standard deviation of the rainfall 

estimates obtained by successive shifts of the start time, is expressed relative to the true average 

rainfall as 

where var[&)] is the variance of rainfall errors €( to )  as defined in (4), over all possible shifts 

in the starting time to. This variance typically increases with decreasing sampling frequency. 

The resampling by shifts procedure has been employed in numerous studies (e.g., McConnell 

and North 1987; Steiner et al. 1995; Soman et al. 1995; Steiner 1996; Li et al. 1996). Steiner 

(1996), for example, used this methodology to estimate the sampling-related uncertainty of 

surface rainfall based on extensive rain gauge information. Using radar data, these analyses were 

subsequently expanded by Steiner and Home (1998) to examine the sampling uncertainty of the 

entire three-dimensional structure of rainfall. 

2) APPROACH BASED ON LAUGHLIN AND BELL 

The sampling-related uncertainty is estimated based on the Laughlin-Bell approach according 

to Eqs. (6), (7), and (8) described in section 2a. The key rainfall parameters are the variance a: 

and time correlation z, of the area-average rainfall rate time series R, ( t ) .  In order to see how 

important the c2 -term in Eq. (6) is, two different estimates are computed: one based on using the 

c1 -term only in (6)-i,e., setting c2 = 0 as in Bell et al. (2001)-and the other based on using 

both terms c, and c2 .  The sampling-related uncertainties are expressed relative to the true rain 

rate as 0, / E .  
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Figures 2-4 show the distributions of three key parameters for the four-month data set: the 

space and time domain-average true rain rate 'i;i (Fig. 2), the variance in time a: of the 

instantaneous area-average rain rates (Fig. 3), and the time correlation z, of the instantaneous 

area-average rain rates (Fig. 4).' The number shown in the bottom right comer of a panel 

indicates the sample size contained in that distribution. The distributions are normalized using 

their respective sample size. The maximum value of a given distribution is shown in the upper 

right comer of the panel. 

The rain rate distribution significantly widens with decreasing time integration, but also with 

decreasing domain size (albeit not as quickly), as shown in Fig. 2. This is expected because 

reduced levels of averaging will retain peak rain rate values more easily. The maximum space 

and time domain-average rain rate increases from approximately 0.3 mm/h for the 500 km and 

30 day setting (top left panel in Fig. 2) to roughly 3.4 mm/h for the 100 km and 1 day 

configuration (bottom right panel). To put this in perspective, a rainfall of 0.3 mm/h intensity 

accumulates approximately 7 mm per day and 220 mm per month. At 3.4 mm/h more than 80 

mm of rain (average over a 10,000 h2 area) are generated in a day. The four-month data set 

thus comprises a representative range of mean rain rates. 

The variance a: of the area-average rain rate trace increases rapidly both with decreasing 

space and time domain, as shown in Fig. 3. The time correlation z, of the area-average rain rate 

trace, however, exhibits a rather different behavior (Fig. 4). Although the maximum of z, 

appears to be similar for given time periods, independent of the space domain, the bulk of the 

' The correlation time Z, of the instantaneous area-average rain rate is determined as the l/e -folding time of the 
autocorrelation. The autocorrelation function is obtained by dividing all covariances by the geometric mean of the 
corresponding variances. The covariance function is estimated by summing the lagged products and dividing by the 
length of the time series. The S-Plus software package was used, which is available from Statistical Sciences, Inc., 
Seattle, Washington 981 09. 
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distribution of correlation times clearly shifts to smaller values with decreasing space and time 

domains. A bimodal distribution with typical values of 2, - 5.5 and 8.5 h is seen for monthly 

rainfall on a 500 km domain. Much shorter time correlations (< 3 h) are observed for daily 

rainfall on 100 km domains. 

The coefficient of variation a,/R of the area-average rain rates is directly proportional to 

the sampling uncertainty, as can be seen from (10). This rainfall parameter, shown in Fig. 5, will 

be used later in the discussion of results (section 3c). 

3. Results and discussion 

a) Characteristics of rainfall sampling uncertainty 

The sampling-related uncertainty is estimated for any combination of the various space and 

time domains, and sampling frequencies explored based on the four-month data set. Note that 

the examined data set represents the equivalent of 2 years worth of data for a 500 km domain, 16 

years for a 200 km domain, and 64 years for a 100 km domain, respectively. Moreover, the 

sampling uncertainty is estimated using two distinctly different approaches, as outlined in section 

2b. The results obtained using the resampling by shifts technique are discussed first. (The 

results using the Laughlin-Bell approach will be described in section 3b.) 

Figure 6 summarizes the results of estimating the sampling uncertainty for the nine possible 

combinations based on three space (500 km, 200 km, and 100 km) and three time (30 day, 5 day, 

and 1 day) domains. In addition, within each panel the results for five sampling time intervals (1 

h, 3 h, 6 h, 8 h, and 12 h) are shown. The sampling uncertainty distributions are represented by 

their full range of values (bold solid line), the center 50% of values (outlined box), and the 

distribution median (bold dot). The results shown in Fig. 6 are limited to space and time 
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domain-average rain rates E - 0.1 mm/h (i.e., 0.075 e R I 0.125 mm/h). Results for other 

mean rain rates are presented later. The corresponding sample size (identical for all sampling 

frequencies) is indicated by the number in the bottom right comer of each panel. The dotted line 

(and shaded area) indicates sampling uncertainty estimates (and range of uncertainty) based on a 

fitted scaling law to the data, as will be discussed later as well. 

The sampling-related uncertainty clearly scales with space and time domain, and with 

sampling frequency, as can be seen from Fig. 6.  The larger the space and time domain the 

smaller is the sampling uncertainty. Similarly, the higher the sampling frequency (i.e., smaller 

sampling time interval) the smaller is the related uncertainty. However, even for a narrow rain 

rate range of 0.075 < 50.125 (nominal - 0.1 d), a very significant range of sampling 

uncertainty is observed. This range of sampling uncertainty is a reflection of the great variability 

of rainfall in space and time. For example, for a TRMM-like sampling of At - 12 h: the median 

of the distribution of sampling uncertainty for daily rainfall on a 100 km domain (bottom right 

panel of Fig. 6 )  is 154%, yet the center 50% of the distribution spans from 116% to 196% 

(extreme values of sampling uncertainty are found as low as 40% and as high as 460%). For a 

GPM-like sampling ( A t  - 3 h), this sampling uncertainty drastically reduces to 43% (median), 

with half the estimates falling within the range of 26%-67%. The sampling-related uncertainties 

for monthly rainfall on a 500 km domain (top left panel), as observed by a TRMM-like satellite 

platform, show a median value of 17%, with the center 50% of values falling between 8% and 

20%. 

Note that at the Equator the true TRMM sampling is closer to At - 24 h. For simplicity, however, variable 
sampling intervals as a function of latitude are not considered in this study. 
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Similarly to Fig. 6, the sampling-related uncertainty may be shown for any mean rain rate. 

Rain rates of 0.5 mm/h, 1 .O d, and 1.5 d are selected to highlight the scaling of sampling 

uncertainty with rain rate in Fig. 7 ;  however, results are shown for 1 day periods only. No 

samples exhibited mean rain rates of 1 mm/h and 1.5 mm/h, respectively, for daily rainfall on 

500 km domains. Similarly, there were no samples with mean rain rates of 1.5 d for daily 

rainfall on 200 km domains. Nonetheless, the scaling of sampling uncertainty with domain size 

can be seen for all rain rates, and by comparing Figs. 6 and 7 a scaling with rain rate becomes 

apparent. 

In order to quantify the scaling of sampling uncertainty with space and time domain size, 

sampling frequency, and mean rain rate, the distribution medians were determined for all forty- 

five combinations of space (3 options) and time (3) domains, and sampling frequencies (5).  The 

median was selected rather than the mean because of its much reduced sensitivity to extreme 

values (outliers). Moreover, this was done for the rain rate range of 0 e E I 3.5 d in steps of 

0.05 mm/h (70 intervals). The resulting large ensemble of distribution medians was then used to 

fit the coefficients a ,  b , c , d , and e of the following simple sampling uncertainty scaling law 

by minimizing the root-mean-square ( R M S )  difference between the predicted uncertainty (12) 

and the corresponding median value, using R, = 1.0 d, Lo = 500 km, To = 30 day, and 

At, = 1 h, re~pectively.~ In addition, sensitivity tests were performed to assess the robustness of 

the coefficient values (Table 1). In particular, we assessed the variability of the coefficients from 

The multiplicative factor u was adjusted by means of removing the mean difference (bias), while the coefficients 
b , c , d , and e were determined iteratively (in steps of 0.05) to find the minimum &L?, difference. 
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month to month, and also using only medians that were based on distributions containing 

minimally 1, 5, 10, or 15 samples. By increasing the minimum number of samples required in a 

given distribution, the respective median values are thought to become more representative and 

thus given priority in the fitting procedure. 

Based on the results summarized in Table 1, we selected a = 0.80 , b = 0.20 , c = 0.70 , 

d = 0.35 , and e = 1.05 as the “best-fit” coefficients of (12). These coefficients exhibit some 

variability from month to month and depend on the underlying data constraints; however, overall 

they appear to be rather robust estimates. The exponents (i.e., coefficients b , c , d , and e )  may 

be uncertain at the 10% level and the overall prediction of sampling uncertainty at the 25% level, 

based on the results compiled in Table 1 and experimentation with weighted fitting procedures in 

logarithmic space (not shown). 

Equation (12), using the fitted coefficients, displays a scaling of sampling-related uncertainty 

of rainfall estimates that is pretty much linear in sampling time interval At ( e  = 1.05 )-at least 

for the range 0 < At I 1 2  h investigated (see Figs. 6 and 7Fsimilar to the results obtained by 

Steiner (1996) or Li et al. (l996), and as predicted by Eq. (10). A linear scaling in At suggests 

that the autocorrelation of the area-average rain rate should decrease roughly exponentially, as 

originally assumed by Laughlin (1981). This linearity predicted for small At , however, depends 

only on the small-lag behavior of the autocorrelation, and does not contradict potentially 

different behavior for longer time lags, as is sometimes observed. For example, Rodriguez- 

Iturbe et al. (1998) provide evidence that rainfall observations appear to have a long-range 

memory, which suggests that the scaling with sampling time interval might change for larger At. 

In fact, Weng et al. (1994) show that an approximate linearity in scaling of sampling uncertainty 

for At < 12 h starts to break down for At > 12 h. The scaling of sampling uncertainty with time 
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domain T ( d  = 0.35) is close to (albeit not quite) the inverse square-root behavior advocated by 

(10). The scaling with space domain size L ( c  = 0.70) is very similar to what would be 

predicted from GATE I rainfall data, as discussed in section 2a. 

Figure 8 highlights the scaling of sampling uncertainty with mean rain rate R ( b  = 0.20), 

showing a clear departure from the inverse square-root behavior suggested by simple models 

(e.g., Bell and Kundu 2000). The scaling of sampling uncertainty as R-0.5 is born out of the 

assumption that variations in total rainfall within an area would primarily be due to variations in 

the number of independently evolving precipitation systems present rather than variations in the 

intensity of the individual system. If domains with more rain tend also to have larger spatial 

extent of rainy areas and/or more intense rain, the dependence may be altered. Apparently 

the above assumptions leading to a R-0.5 behavior are not applicable here. 

The shaded areas in Figs. 6, 7, and 8 outline the range of 0.75-1.25 times the sampling 

uncertainty estimated by (12) using the median-fitted coefficients (dotted lines). This 

uncertainty range roughly approximates the center 50% of the sampling uncertainties estimated 

by the resampling by shifts method. 

How well does the scaling law (12) based on the fitted coefficients gauge the sampling- 

related uncertainty using all four months’ worth of data? The visual impression obtained from 

Figs. 6,  7, and 8 suggests that the simple scaling law (12) predicts the sampling uncertainty as a 

function of space and time domain, sampling frequency, and mean rain rate rather well. A closer 

inspection though reveals deviations fkom the approximate linear scaling in A t .  For example, a 

scaling with sampling time interval of Ate’’ is hinted for 500 km domains, while a scaling more 

like Atec1 is observed for 100 km domains. These nuances become most visible for sampling 
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time intervals of At > 8 h. Recall Fig. 4 that displayed 2, < 3 h for 100 km domains, which is 

significantly smaller than the sampling time interval, consistent with the discussion in section 2a. 

Tables 2 and 3 compile the actual mean and RMS differences (in units of %) between 

sampling uncertainties estimated by the resampling by shies method and predicted by the 

median-fitted ‘scaling law (12). The mean differences (Table 2) are typically small (a few 

percent only); mean differences of 10% or larger are found for At 2 6 h, but compared to the 

values of the corresponding distribution median (Figs. 6 and 7) these differences are mostly still 

relative small. The RMS differences (Table 3), in contrast, show magnitudes comparable to the 

median values for most space and time domains and sampling time intervals of At I 6  h; only 

for lower sampling frequencies reduce the RMS differences to a fraction of the respective 

median values. 

These results underline the basic difficulties in estimating sampling-related uncertainties for 

real rainfall situations. In light of the above discussion, and because the estimation methods 

applied are statistical in nature, the derived sampling uncertainties should be expressed in 

probabilistic terms. For example, based on the four month’s worth of data analyses, there is a 

50% chance that the true (yet unknown) sampling uncertainty falls within the range of 0.75-1.25 

times the sampling uncertainty predicted by the median-fitted simple scaling law (12). 

Moreover, in the “real world”, attaching a sampling uncertainty to satellite rainfall averages 

is based on the sample averages themselves, because the underlying true rainfall is unknown. 

This, of course, introduces additional uncertainty that needs to be quantified. Facing this 

problem, however, is beyond the scope of the present study. 
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b) Comparison of two approaches 

It is instructive to compare sampling uncertainties estimated based on approaches other than 

the one described in the previous section. The observed differences will highlight a sensitivity of 

the results to the method applied obtaining them. Here, sampling uncertainties estimated by the 

resampling by shifts technique (non-parametric approach) are contrasted with results obtained by 

the (parametric) Laughlin-Bell approach, frst based on using the c, -term in Eq. (6) alone. (The 

results based on also including the c,-term are presented later.) Figures 9 and 10 show this 

comparison for the same data as displayed in Figs. 6 and 7, respectively. For clarity of the 

figures, however, the data are shown in a slightly different way: there are fifteen panels for all 

combinations of time periods and sampling frequency, and the results are distinguished in colors 

by domain size (500 km in red, 200 km in green, and 100 km in blue). 

The encouraging outcome of this comparison is that the sampling uncertainties estimated by 

both the non-parametric and parametric statistical approaches agree rather well, independent of 

space and time domain, and sampling frequency, as demonstrated by Figs. 9 and 10. A closer 

look, however, reveals that there is significant variability (and potentially some minor trends) 

among the results that has to be attributed to differences in the way the sampling uncertainty is 

estimated. Interpreting these nuances is not straightforward though and requires M e r  

evaluation. 

Tables 4 and 5 list the actual mean and RMS differences of the data displayed in Figs. 9 and 

10 to provide some quantitative information about the comparison. The mean difference (Table 

4) between the resampling by shifts and the Laughlin-Bell approaches typically amounts to a few 

percent only (the maximum difference is 12.4%). Most of the time the Laughlin-Bell approach 

tends to predict sampling uncertainties that on average are slightly larger than those obtained by 
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the resampling by shifts method. This may not filly concur though with the visual impression 

obtained from Figs. 9 and 10. The RMS differences (Table 5) vary between approximately 1% 

and 17%. Moreover, the RMS differences appear to scale with space and time domain size, 

sampling frequency, and mean rain rate, similarly to the estimated sampling uncertainties. For 

daily rainfall on a 100 km domain observed by a GPM-like sampling ( A t  - 3 h), the RMS 

difference between sampling uncertainties estimated by the resampling by shifts and Laughlin- 

Bell approach is about 12%-13%, which is significantly less than the sampling uncertainty itself 

(see Figs. 9 and 10) for mean rain rates of 1.0 mm/h or less. For sampling time intervals At - 1 

h, the RMS differences are of the same magnitude as the median values of sampling uncertainty 

(Figs. 6 and 7). Especially for longer sampling time intervals, however, the RMS differences 

tend to be a fraction of the sampling uncertainty only. For a TRMM-like sampling ( A t  - 12 h), 

the RMS differences are small compared to the value of the sampling uncertainty for all space 

and time domains examined. 

The RMS difference between sampling uncertainties estimated by the resampling by shifts 

method and the Laughlin-Bell approach, as shown in Table 5, is of comparable magnitude or 

smaller (particularly for At 2 3 h) than the RMS difference between uncertainties estimated by 

the resampling by shifts method and those predicted by the median-fitted simple scaling law 

(12), compiled in Table 3. The largest differences occur for infrequent sampling ( A t  > 3 h) of 

small mean rain rates on smaller domains ( I  200 km), where the data-based uncertainty 

estimates agree more closely with each other than to the uncertainties gauged by the simple 

scaling law (1 2). 

What is the effect of the c,-term when estimating the sampling uncertainty using Eq. (6)? 

The effect of including this term in the Laughlin-Bell estimation procedure becomes noticeable 
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for 5 day and particularly for 1 day periods, as highlighted by Fig. 11. Note that no distinction 

was made for different sampling frequencies, because of the small overall effect. The effect 

becomes more apparent with decreasing time rather than space domain. However, the maximum 

difference in sampling uncertainty estimates between using the c1 -term only (i.e., setting c2 = 0)  

or using both terms c, and c2 in (6) was less than 10% for the space and time domains explored. 

This is clearly less than the difference between estimating the sampling uncertainty based on the 

resampling by shifts method and the Laughlin-Bell approach, as displayed in Figs. 9 and 10 and 

gauged by Tables 4 and 5. On a monthly or even weekly basis, therefore, the c,-term may 

safely be ignored. 

c) Discussion 

There are numerous studies of sampling uncertainty assessments for satellite-based rainfall 

estimates reported in the literature. Most of these are (a) based on rather limited data samples 

andor (b) primarily concerned with one particular approach of estimating the sampling 

uncertainty. Notable exceptions to (a) are the studies of Oki and Sumi (1994) and Steiner 

(1996), the former using a large data set of gauge-adjusted radar data over Japan and the latter 

lots of rain gauge data from Melbourne, Florida, and especially Darwin, Australia. An exception 

to (b) is the study of Li et al. (1996), who compared rainfall sampling uncertainties estimated 

based on stationary and non-stationary rainfall models, plus the resampling by shifts method- 

albeit on one month of data from Darwin only. Much research has focussed on assessing the 

uncertainty of rainfall averages as a hnction of sampling frequency for fixed space and time 

domains. The scaling of sampling-related uncertainty with space and time domains has received 

attention mostly from a theoretical perspective based on stochastic rainfall model assumptions. 
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Similarly, the dependence of sampling uncertainty on rainfall characteristics awaits a thorough 

evaluation based on large amounts of data. , 

The extensive analyses presented here provide thus a unique basis for evaluating the 

sampling uncertainty behavior as a function of space and time domains, sampling frequency, and 

rainfall characteristics. Moreover, the results of this study enable comparison to sampling 

uncertainties estimated over a wide range of climatic rainfall conditions and sampling 

configurations. This is achieved by scaling the respective results to a common basis in terms of 

space and time domains, sampling frequency, and rainfall. Before we can do so, however, we 

need to concern ourselves with the problem of rainfall calibration first. A calibration error in 

rainfall could potentially affect comparisons in two different ways: (i) through errors in the 

estimation of the sampling uncertainty and/or (ii) the comparison of sampling uncertainties 

derived for various climatic rainfall regimes or observing platforms. 

A rainfall calibration error will affect both the variance of the area-average rainfall and the 

mean rain rate. Fortunately, however, the relative sampling uncertainty, expressed in terms of 

the ratio of standard deviation divided by the mean, remains unaffected by a rainfall calibration 

error-at least when the calibration error is multiplicative in nature. Similarly, the correlation 

time of the area-average rainfall is not affected as well. Thus, the relative sampling uncertainties 

estimated by both the resampling by shifts and the Laughlin-Bell methods are unaffected by 

calibration error. 

The relative sampling uncertainty needs to be tied to an absolute mean rain rate, however, in 

order to make it comparable to results obtained for different climate regimes or observing 

platforms. This is where the problem of a potential rainfall calibration error may enter. A 

simple back-of-the-envelope calculation shows how much difference a calibration error might 
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cause. Let us assume that 6, / R  is the relative sampling uncertainty estimated for a given mean 

rain rate and fixed space and time domains, and sampling frequency. Moreover, let us 

assume that the sampling uncertainty scales as Eq. (12) suggests, a,/z = It can be 

shown then that the rainfall calibration error y has no effect on the power factor ,B . Because the 

relative sampling uncertainties obtained for two different rainfall calibrations are identical, as 

demonstrated above, 

The two multiplicative factors of the above scaling law, therefore, are related through E = ays. 

In order to quantify this effect, let us assume a calibration error of y = 2-radar-based rainfall 

estimates may easily be in error by a factor of two compared to rain gauges, because of 

application of an inappropriate relationship between radar reflectivity and rain rate, or radar 

hardware calibration problems (e.g., Steiner et al. 1999). For a power factor of p - 0.2, as seen 

in the present analyses (section 3a), the effect of such a calibration error causes a difference of 

15%. Note that Chang and Chiu (2001) and Bell et al. (2001) find p - 0.3 based on several 

years worth of SSWI and TMI rainfall estimates over tropical latitudes. For a power factor of 

,!3 - 0.5, which appears more typical for rainfall over southern Japan (Oki and Sumi 1994; see 

also Bell and Kundu 1996, 2000) and near Darwin, Australia (Steiner 1996), however, the 

calibration error will result in a 40% difference. In summary, one has to be aware of the rainfall 

calibration problem when comparing results of sampling uncertainties estimated for various 

locations andor observing platforms. Moreover, for as long as the dependence of p on rainfall 

characteristics remains unknown, there is an inherent uncertainty with regard to the choice of 

when scaling sampling uncertainties to a common basis. 
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Armed with knowledge about these caveats, let us now focus on comparing the results of the 

present analyses with sampling uncertainties estimated for various climatic regions. These 

comparisons will be limited primarily to studies concerned with infrequent but regularly timed, 

flush-visits made by a single satellite, similar to our assumptions. Laughlin (1981), McConnell 

and North (1987), North and Nakamoto (1989), and Nakamoto et al. (1990), all using radar- 

based rainfall data collected during GATE, found sampling-related uncertainties of 8%-10% for 

monthly (30 day) rainfall estimated based on 12 h sampling over a squared domain with side 

length of 280 krn. The mean rain rate for GATE Phase I was 0.445 mm/h (Kedem et al. 1990; 

Bell et al. 1990). The present data set does not contain rainfall examples of that intensity over a 

similar space and time domain. However, based on the median-fitted sampling uncertainty 

scaling law (12), the corresponding sampling uncertainty is predicted as 19.2%. Moreover, there 

is a 50% chance (ie., shaded area in Figs. 6 and 7) that the true sampling error would fall within 

the range 14.4%-24.0%. Both, the GATE rainfall (Hudlow and Patterson 1979) and the rainfall 

data used in this study (Fig. 1) appear to compare favorably with contemporaneous rain gauge 

measurements. Thus, radar-rainfall calibration errors may not explain the difference in estimated 

sampling uncertainty. In addition, the difference, whether the sampling uncertainty is gauged 

based on a scaling law (12) fitted to the results of the resampling by shifts approach (section 3a) 

or the results obtained by the Laughlin-Bell approach (fitted coefficients not shown), amounts to 

a few percent only. The difference in sampling uncertainty estimated for GATE rainfall and 

rainfall in the central United States, therefore, appears to be real and has to be attributed to 

differences in rainfall characteristics. For example, the coefficient of variation o,/Z of the 

area-average rain rates over a 200 km domain is significantly smaller for GATE rainfall (-1.9) 

than for the data underlying this study (-3), as can be seen from Fig. 5 (see 30 day, 200 km 
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panel). On the other hand, the correlation in time of GATE rainfall (2, - 8 h) appears 

somewhat longer than for the central United States precipitation (Fig. 4). The observed 

differences in rainfall characteristics are consistent with the differences seen in sampling 

uncertainty between analyses based on GATE rainfall and this study. 

Seed and Austin (1990), using radar information of rainfall observed in Florida during 

August 1987, report a sampling-related uncertainty of 22% for the 20 day rainfall accumulation 

over a 425 km domain estimated based on 12 h sampling. The corresponding mean rain rate was 

0.1 d. Using (12) a sampling uncertainty of 22.2% is predicted for a similar configuration, 

with a 50% likelihood of the true value to range within 16.6%-27.8%. This excellent agreement, 

however, is likely to be fortuitous in light of the fact that the radar-based rainfall data used by 

Seed and Austin (1990) have not been calibrated with rain gauges. The coefficient of variation 

of approximately 2.8 and time correlation of 3 h estimated by Seed and Austin (1 990) are similar 

to the present analyses. 

For their analyses of sampling uncertainty, Li et al. (1996) used data collected during 

December 1989 through February 1990 as part of the Down Under Doppler and Electricity 

Experiment @ W E E ;  Rutledge et al. 1992) by a radar located near Darwin, Australia. For a 

monthly rainfall accumulation (mean rain rate - 0.1 mmh) over a 200 lan domain, estimated 

based on 12 h sampling, a sampling-related uncertainty of 26% was obtained essentially 

independent of whether this uncertainty was estimated based on a stationary or non-stationary 

model, or the resampling by shifts technique. Present analyses based on using (12) suggest a 

sampling-related uncertainty of 32.7% (k 8.2%) for a similar configuration. This is in fairly 

close agreement, particularly considering that the radar-rainfall data set used by Li et al. (1996) 
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was only roughly calibrated with rain gauge information, and that the coefficient of variation of 

the area-average rain rates was about 2.5 and the time correlation approximately 3.5 h. 

Soman et al. (1995, 1996) provide another set of analyses of radar-based rainfall data 

collected in January and February 1988 at Darwin, Australia. The sampling uncertainties 

estimated for the 18 day (R-0.28 mmih, 0~lR-1 .61)  and 21 day (R-0.43 d, 

o,/R - 1.47 ) time periods over a domain of roughly 280 km side length were approximately 

32% and 25%, respectively, based on a TRMM-like ( A t  ,., 12 h) sampling frequency. The 

sampling uncertainty estimates obtained by either the resampling by shifts method (Soman et al. 

1995) or space-time spectral analyses (Soman et al. 1996) were in close agreement. These 

estimates compare also favorably with predictions of sampling uncertainty for similar 

configurations using (12): 25.2% (f 6.3%) and 21.9% (f 5.5%) for the first and second phase, 

respectively. 

4. Conclusions 

The uncertainty of rainfall estimates obtained from discrete satellite sampling in space and 

time was assessed based on multi-year, continental-scale radar-mosaic data. Uncertainties for 

typical space and time domains, and sampling frequencies were evaluated. The sampling 

uncertainty was investigated for all combinations of 1 h, 3 h, 6 h, 8 h, or 12 h sampling of rainfall 

over 100 km, 200 km, or 500 km domains, and 1 day, 5 day or 30 day accumulations. The 

analyses of four selected summer months represent the equivalent of 2 years worth of analyses 

on a 500 km domain, 16 years on a 200 km domain, and 64 years on a 100 km domain. 

Moreover, a theoretical framework was established that enabled direct comparison of parametric 

and non-parametric statistical approaches to estimating the sampling-related uncertainty. In 
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particular, results based on a statistical methodology with roots in the work of Laughlin (1981) 

and Bell et al. (1990) were contrasted with those obtained by a simple empirical resampling by 

shifts technique. 

The main results of this study may be summarized as: 

The sampling uncertainty scales inversely with space ( L )  and time ( T )  domain size, and 

rainfall (R ), but directly with sampling time interval (At)). The scaling with space and time 

domain, and sampling frequency behaves as anticipated from previous studies. The scaling 

with rainfall, however, deviates significantly from the expected inverse square-root behavior 

as predicted by simple theoretical models, which appeared to account for the results of Oki 

and Sumi (1994) and Steiner (1996). 

The rainfall sampling uncertainty, expressed as a percentage of the domain-average rain rate, 

may be characterized by a simple scaling law 

where R, = 1 mm/h, Lo = 500 lan, To = 30 days, and Ato = 1 h. Although (14) captures the 

main features of the central United States precipitation data, there is significant variability of 

sampling uncertainty about this simple (fitted) scaling law, some of which is certainly 

attributable to the great space-time variability of rainfall. 

Sampling uncertainties predicted by (14) are statistical in nature and should therefore be 

expressed in probabilistic terms. For example, based on the data examined, there is a 50% 

chance that the true sampling uncertainty may reside within the range of 0.75-1.25 times the 

value estimated by (14). 
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The results of the parametric Laughlin-Bell and non-parametric resampling by shifts 

approaches to estimating the sampling-related uncertainty agree rather favorably, despite 

some appreciable variability. The differences between the two approaches highlight a 

sensitivity of the estimated sampling uncertainties to the choice of method. 

A potential calibration error of the rainfall data does not affect the estimation of relative 

sampling uncertainty. However, an absolute calibration of the rainfall data is required in 

order to make the results comparable to other studies based on different climate regions 

and/or observing platforms. Such comparisons are highly sensitive to the accuracy of rainfall 

observations. 

Comparison among different land-based data sets reveals comparable sampling-related 

uncertainties for rainfall estimates based on discrete observations in space and time. 

Sampling uncertainties estimated for oceanic rainfall (e.g., GATE), in contrast, are somewhat 

smaller. This result is consistent with a larger variability and shorter time correlation of 

rainfall over land than over ocean (e.g., Ricciardulli and Sardeshmukh 2002). 

Additional work is required to evaluate the relationship between rainfall characteristics and 

the power law of the scaling with domain-average rain rate. This will encompass analyses of 

rainfall data collected in a wide variety of climate regions. Moreover, future investigations may 

reveal that, besides the domain-average rain rate, variance and correlation time of the area- 

average instantaneous rain rate, there might be other descriptors of rainfall characteristics 

important for predicting sampling-related uncertainty. 
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Appendix: Details of estimating sampling uncertainty according to Laughlin 

Some details of the derivation of Eq. (6) are given here. The average squared uncertainty 

&'(to) for a particular starting time to is estimated in Laughlin's (1981) approach by writing the 

ensemble average in terms of the lagged correlations of the area-average rain rate RA (t)  , starting 

from the definition 

where k(to) is the sample average rainfall for starting time to and is the true mean rainfall as 

given in Eqs. (3) and (2), respectively; and where the primes indicate deviations from the 

ensemble mean, z' = z - (z)  . Equation (A2) expands to 

Substituting (3) into the first term of (A3), we obtain 

and defining the lagged covariance of R, ( t )  as 

+z)R;(t)), (A51 

which was assumed by Laughlin (1 98 1) to depend only on the separation in time of the two rain 

rates, we can write (A4) as 
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where we have used the dependence of cA [(i - j ) A t ]  on i and j only through the difference 

i- j to rewrite the double s u m  in (A6) as a single sum in (A7). Note that (A7) does not in fact 

depend on t o .  

Likewise, the second term in (A3) can be written in terms of cA (z) using the definition of 

in Eq. (2) to obtain 

where the double integral in (A8) has been reduced to a single integral by taking advantage of 

the integrand's dependence on the difference in the two integration times. As in the case of 

(A7), (A9) does not depend on t o .  

The cross term in (A3), after substitution for and k(to) from Eqs. (2) and (3)' becomes 

Although more complex than the previous two terms, this can be simplified considerably if we 

take into account at this point the resampling by shifts averaging in Eq. (5),  which we 

approximate as a continuous average, 

We can then use (A10) and n = T/At to write (A1 1) as 
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(fi.(to)R') =- 1 T 4-C- 1 "  Jc,(to +iAt - t , )dt,  n-1 

to T , T i=o At , 
1 T T  

T 2  0 0  
= - JJC" (4 - 4 )dt&, 

where the last step in (A12) uses (A8). 

approximate expression for the resampling by shifts average over Eq. (A3) as 

Laughlin's (1981) approach therefore gives an 

Laughlin ( 198 1) proposed approximating the lagged covariance as an exponential, 

(A141 c,(r)=o,e 2 +I/G ' 

where a: is the variance and 2, the correlation time of the instantaneous area-average rain rate 

R, ( t )  . If the assumed form of the autocorrelation (A14) is substituted into (A7) and (A9), some 

straightforward algebra and the summation identities 

1-zn n-1 

q=o 

z - [n - (n - l)z]z" n-1 

c q z q  = 
q=o (1-2)2 

give the result in Eq. (6). 

autocovariance will result in different expressions for (A13). 

Note that assumptions different from (A14) for the lagged 
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Table 1. Results of sensitivity analyses for fitting scaling law coefficients to Eq. (12). See text 

d 

0.40 

0.40 

0.35 

0.35 

0.35 

0.35 

0.35 

0.35 

0.35 

0.35 

0.35 

0.35 

0.40 

0.35 

0.30 

0.30 

0.35 

0.35 

0.35 

0.35 

for details. 

e 

1.05 

1.05 

1.05 

1.00 

1.05 

1.05 

1.00 

1.00 

1.05 

1.05 

1.05 

1.05 

1.00 

1.00 

1.00 

1.00 

1.10 

1.10 

1.05 

1.05 

Data Medians 

June 1999 - all 

- min 5 values 

- min 10 values 

- min 15 values 

July 2000 - all 

- min 5 values 

- minimum 10 

- & h u m  15 

August 1997 - all 

- min 5 values 

- min 10 values 

- min 15 values 

September 1998 - all 

- min 5 values 

- min 10 values 

- min 15 values 

All four months - all 

- min 5 values 

- min 10 values 

- rnin 15 values 

Samples 

675 

420 

315 

255 

645 

425 

3 10 

250 

755 

365 

270 

210 

535 

275 

210 

165 

845 

565 

480 

410 

- 
a 

0.69 

0.80 

1.01 

1.13 

0.74 

0.82 

1.05 

1.07 

- 

0.80 

0.75 

0.80 

0.81 

0.64 

0.97 

1.25 

1.28 

0.64 

0.70 

0.79 

0.80 - 

- 
b 

0.20 

0.15 

0.10 

0.10 

0.25 

0.20 

0.15 

0.15 

- 

0.15 

0.20 

0.20 

0.20 

0.25 

0.20 

0.15 

0.15 

0.20 

0.20 

0.20 

0.20 - 

- 
c - 

0.70 

0.65 

0.65 

0.65 

0.70 

0.70 

0.65 

0.65 

0.70 

0.70 

0.65 

0.65 

0.75 

0.65 

0.65 

0.65 

0.75 

0.70 

0.70 

0.70 - 

RMS 

10.83% 

8.96% 

7.95% 

7.83% 

9.73% 

8.23% 

8.06% 

7.16% 

1 1.46% 

8.07% 

7.25% 

6.83% 

14.75% 

1 0.7 1 yo 

7.97% 

7.75% 

9.22% 

7.03% 

6.84% 

6.76% 

- 

- 
Page 38 



Table 2. Mean difference between sampling uncertainties estimated by the resampling by shifts 

approach and the fitted scaling law (12) using the coefficients a = 0.80, b = 0.20, c = 0.70, 

d = 0.35, and e = 1.05. The numbers are based on the results displayed in Figs. 6 and 7. 

A t = l h  A t = 3 h  I At=6 h Af t12  h At=8 h 

I 500km -0.7% -2.2% -t -1.1% -2.6% 

-5.2% -2.7% 

-3 .O% 

-3.8% 

-2.3% 

0.9% 
30day F- -0.8% 

-5.3% - 1.4% 

I 500km 0.6% -5.4% 

2.9% 

-4.3% 

0.6% 

10.5% 

5day 4.1% 

2.9% 10.5% 

1 1.9% 4.8% 

12.9% 

-0.2% -0.2% 

-0.2% 2.8% 

2.7% 

11.0% 

11.8% 

9.2% 

- 1 5.9% 6.1% 

1 day 

500 km 

-5.7% - 1.4% -2.9% 

-1.8% -1.8% 

2.6% 

-7.1% -6.8% 

8.5% 13.2% 4.2% 

2.2% 11.5% 1 1.5% 

- I -  - I - 

lday pixi- 4.8% -1.5% -2.9% 

-2.5% -0.1% 5.1% 

100 km 

- I -  - 

- I -  - - I -  --pi%- -3.4% -10.6% 
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Table 3. RMS difference between sampling uncertainties estimated by the resampling by shifts 

approach and the fitted scaling law (12) using the coefficients a = 0.80, b = 0.20, c = 0.70, 

d = 0.35, and e = 1.05. The numbers are based on the results displayed in Figs. 6 and 7. 

T L At=1 h At=3 h At=6 h At=8 h 

0.1 mm/h 

At=12 h 

0.5 mm/h 

30day 

500 km 0.8% 2.5% 4.5% 5.9% 7.6% 

200km 1.3% 3.5% 6.3% 8.7% 11.8% 

100 km 15.7% 1.9% 5.3% 11.1% 11.6% 
I 

500 km 1.4% 13.3% 4.1% 7.8% 9.1% 

5 day 200km 2.6% 7.2% 16.5% 19.9% 27.1% 

100 km 

500 km 

4.1% 15.5% 29.9% 32.8% 39.5% 

2.8% 8.3% 15.6% 21.3% 30.2% 

200 km 
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6.4% 21.8% 38.0% 43.6% 49.9% 

1 day 

100 km 11.7% 32.8% 46.8% 51.6% 62.1% 

500 km 1.7% 3.7% 8.7% 14.6% 19.0% 

200km 3.3% 10.3% 24.6% 30.8% 40.1% 

100 km 5.2% 20.9% 37.5% 42.2% 47.3% 

1 day 2 0 0 h  2.5% 9.0% 25.0% 29.6% 37.0% 

100 km 4.2% 15.4% 29.6% 33.4% 41.0% 

1 day 200km - - - - - 

100 km 3.9% 1 1.4% 14.4% 20.7% 33.7% 



Table 4. Mean difference between sampling uncertainties estimated by the resampling by shifts 

and Laughlin-Bell approaches. The numbers are based on the results displayed in Figs. 9 and 10. 

L A t = l h  A t = 3 h  A t = 6 h  A t = 8 h  

0.1 mm/h 

At=12h 

0.5 mm/h 

500 km 

200 km 

1.0 mm/h 

~ 

-0.7% -1.8% -2.9% -3.7% 0.2% 

-1.5% -3.5% -3 -2% - 1.2% -1.4% 

1.5 mm/h 

100 km 

T 

-2.5% -2.5% -1.1% -2.0% -0.6% 

30 day 

500 km 

5 day 

-2.0% -4.6% -7.7% -9.4% -3.8% 

200 km -3.1% -6.8% -6.0% -4.1% - 1.2% 

100 km -4.9% -5.2% -0.2% 1 .O% 1.3% 

500 km -2.3% -5.6% -5.8% -4.4% 3.9% 

200 km 

100 km 

-4.3% -7.0% - 1.5% 1.8% 6.9% 

-5.4% -2.7% 3.5% 5.8% 8.6% 
I I I I I 

500km I -2.6% I -5.9% I -10.4% 1 -12.4% I -11.5% 

200 km -4.5% -8.6% -5.8% - 1.5% 7.3% 

100 km 

200 km -3.5% -7.9% -2.3% 0.0% -2.0% 

-7.1% -7.5% -0.2% 2.8% 6.5% 

I 

100 km -5.6% 
I 

-7.3% -3 .O% 0.6% 7.5% 
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200 km 

100 lan 

- - - - 

-4.0% -8.8% -7.7% -2.3% 0.3% 



Table 5. RMS difference between sampling uncertainties estimated by the resampling by shifts 

I - R T L A t = l h  A t = 3 h  A t = 6 h  A t = 8 h  At=12h 

I 

500 km 0.8% 2.3% 3.5% 4.4% 6.9% 

30day 200km 1.8% 4.2% 6.7% 8.0% 10.7% 

100 km 3.0% 5.1% 9.3% 9.7% 12.4% 

and Laughlin-Bell approaches. The numbers are based on the results displayed in Figs. 9 and 10. 

500 km 2.2% 5.3% . 10.1% 12.7% 12.0% 

0.1 mm/h 5 day 200km 3.9% 9.8% 12.8% 1 1.4% 13.1% 

100 km 6.4% 11.6% 13.2% 13.1% 13.5% 

500 km 3.2% 8.8% 11.6% 10.9% 12.2% 

1 day 200km 6.3% 12.1% 11.8% 11.6% 12.2% 

100 km 9.1% 12.5% 12.2% 12.8% 13.3% 

500 km 3.3% 7.8% 14.1% 16.5% 14.6% 

12.7% 17.1% 

100 km 9.1% 13.7% 12.3% 1 1.8% 1 1.4% 

500 km - - - - - 

0 . 5 d  1 day 200km 5.6% 11.8% 12.4% 

1 . O d  1 day 200km 5.7% 13.2% 12.5% 7.9% 13.6% 

100 km 7.0% 12.6% 11.3% 11.7% 14.3% 

500 km - - - - - 

1 . 5 d  1 day 200km - - - - - 

12*2% I 9*7% 11.8% I 12.7% I I l 0 O k m  I 
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0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 

Raingauge Accurndaion [m] 

Figure 1. Geography and radar-rainfall calibration. (a) Study domain (shaded in gray) covering 

the Great Plains of the United States. The approximate boundaries of this domain are 35 N to 45 

N in degrees longitude and 80 W to 100 W in degrees latitude. (b) Radar-based versus gauge- 

accumulated rainfall for all four months combined. (c)-(f) Radar versus gauge rainfall for June 

1999, July 2000, August 1997, and September 1998, respectively. The ratio of mean radar to 

mean gauge rainfall is indicated in the bottom right corner of a panel. 
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YI 
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E 
Y 
0 
0 
N 

E 

E 
Y 
0 

30 day 

- 0.31 IC1 
0.0 0.5 1.0 1.5 

5 

nux = 0.44 1 

0.0 0.5 1.0 1.5 

I day 

rrax = 3.37 0 Ll n 
0.0 0.5 1.0 1.5 

Space and Time Dornain-Average Rain Rates [mmlh] 

Figure 2. Distributions of space and time domain-average rain rate E based on four months of 

data for three averaging areas and three averaging periods. The sample size, indicated by the 

number in the bottom right comer of each panel, is used to normalize the respective mean rain 

rate distribution. The maximum value of each distribution is shown in the top right corner. 
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E 
Y 

E 

E 
Y 
0 
0 
N 

E s 
0 
0 
Y 

m - 10.81 

30 day 

m - 10.81 

m~ = 0.51 L.1 
, 

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 

Variance in Time of Area-Average Rain Rates [(mmlh)*Z] 

Figure 3. Distributions of the variance a: of the instantaneous area-average rain rate R A ( f )  

based on four months of data. The notation within panels is similar to Fig. 2. 
1 
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30 day 5 

E 
Y 

0 0 
y1 

E 
Y 
0 
0 
N 

E 

2 
Y 
0 

muc = 4.75 I 

. ,;;t3sI 

Y 
0 3 6 9 0 3 6 9 0 3 6 9 

Correlation in Time of Area-Average Rain Rates b] 

0 
P 

0 
N 

0 

0 
-r 

0 
N 

0 

0 
P 

0 
N 

0 

Figure 4. Distributions of the time correlation z, of the instantaneous area-average rain rate 

R,  ( t )  based on four months of data. The notation within panels is similar to Fig. 2. 
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E 
Y 
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0 
7 

30 day 

i 
5 *  

L L  
0 4 a 12 0 4 a 12 

lrrsx-125 o r l  k 
I.L-, t 0 
0 4 8 12 

Coefficient of Variation d Area-Average Rain Rates [-] 

Figure 5. Distributions of the coefficient of variation 6, / E  of the instantaneous area-average 

rain rate R, ( t )  based on four months of data. The notation within panels is similar to Fig. 2. 
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30 day 

E 
A 

YI 
8 

E r 
0 
0 
N 

E 
Y 
0 0 
r IF. . ,=I 

170 ' 

0 100 200 0 100 200 0 100 200 

Rainfall Sampling Uncertainty PA] 

Figure 6. Distributions of the sampling-related uncertainty (determined by the resampling by 

shifts approach) as a function of space and time domain, and sampling frequency. Shown are the 

results for a space and time domain-average rain rate of E - 0.1 mm/h based on the four-month 

data set. The full range of each distribution is shown by the solid line, the outlined box indicates 

the center 50% of the values, and the bold dot marks the distribution median. The sample size 

for each distribution (identical for all sampling frequencies shown within a panel) is indicated by 

the number in the bottom right comer. The dotted line is based on the fitted scaling law (12) 

characterizing the sampling-related uncertainty as a function of space and time domain, and 

sampling fiequency, with = 0.1 mm/h. The surrounding shaded area marks the predicted 

sampling uncertainty k 25% of its value. See text for details. 
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3 
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E z 
0 
0 
N 

E z 
0 
0 
7 

IT, , 7l I/. . . ol 

0 100 200 0 100 200 0 100 200 

Rainfall Sampling Uncertainty FA] 

Figure 7. Distributions of the sampling-related uncertainty (determined by the resampling by 

shifts approach) as a fimction of space and time domain, and sampling frequency, similar to Fig. 

6. Shown are the results for 1 day rainfall only, but for increasing mean rain rates of 0.5 (left), 

1.0 (middle), and 1.5 mm/h (right panels). 
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30 day 5* 
Datab.Mdm12hrarrpling 

0 1 00 200 0 100 200 0 100 200 

Rainfall Sampling Uncertainty Pk] 

Figure 8. Distributions of the sampling-related uncertainty (determined by the resampling by 

shifts approach) as a fimction of space and time domain, and domain-average rain rate in 

intervals of 0.05 mm/h, as used for the fitting of Eq. (12). Results are shown for a sampling time 

interval of 12 h. The lines, outlined boxes and shaded areas are similar to Figs. 6 and 7. 
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l h  3 h  6 h  8 h  12h 

P 
U 
0 
m 

50 150 260 50 150 250 50 150 250 50 150 250 50 150 250 

Sampling Llncatainby p] - Resampling Approach 

Figure 9. Comparison of sampling uncertainty estimated by the Laughlin-Bell ( c ,  term only) 

vs. resampling by shifts approaches for the various explored space and time domains, and 

sampling frequencies. Shown are the results for a space and time domain-average rain rate of 
- 
R - 0.1 mm/h based on the four-month data set. The results for the three space domains are 

shown in different colors (500 km in red, 200 km in green, and 100 km in blue). The dotted line 

indicates 1 : 1 correspondence. 



l h  3 h  6 h  Bh 12h 

50 150 250 50 150 250 50 150 250 50 150 250 50 150 250 

Sampling Uncertainty pk] - Rcsampling Approach 

Figure 10. Comparison of sampling uncertainty estimated by the Laughlin-Bell (c, term only) 

vs. resampling by shifts approaches for the various explored space and time domains, and 

sampling frequencies, similar to Fig. 9. Shown arc the results for 1 day rainfall only, but for 

increasing mean rain rates of 0.5 (bottom), 1.0 (middle), and 1.5 mm/h (top panels). 



30 day 5- 1 day 

I .  

E 
Y 

In 
8 

E 
Y 
0 
0 
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5 
0 
0 
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mW-1.09 

0.95 1.05 1.15 0.95 1.05 1.15 0.95 1.05 1.15 

LaughliniBell Approach - Ratio of Term 1 +2 /Term 1 

Figure 11. Distributions of the ratio of sampling uncertainty estimated by the Laughlin-Bell 

approach using both terms c, and c2 in Eq. (6) and using the c, term only. Shown are the 

results for the space and time domains explored based on the four-month data set. No distinction 

is made for different sampling frequencies. The distributions are normalized by their respective 

sample size. 
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